阐述蛋白质结构预测的方法与原理

蛋白质各个结构层次的基本特点是什么?

蛋白质各个结构层次的基本特点是什么?

蛋白质有4级层次结构。蛋白质的一级结构决定了蛋白质的基本性质,是指氨基酸的排列顺序,由共价键来结合。
蛋白质的二级结构是指多肽链借助氢键作用沿一个方向,具有周期性结构的构像。
蛋白质的三级结构是指多肽链进一步盘区折叠形成复杂球形分子的结构,维持其结构的作用力有氢键,离子键,二硫键和范德华力等等。
蛋白质的四级结构是多条多肽链相互结合,从而形成具有生物活性蛋白质

什么是蛋白质的变性和复性?蛋白质的高级结构为何不稳定?

蛋白质变性是指天然蛋白质分子受到某些物理或化学因素的影响时,次级键被破坏,天然构象解体,生物火性丧失,理化性质也随之改变. 蛋白质变性后也有可能在去掉变性条件后,恢复到原来的构象,其理化性质也得到恢复的现象成为蛋白质复性. 蛋白质的高级结构都是有非共价键连接的,即范得华力,疏水作用力等,所以在受到物理化学因素影响时容易断裂,导致蛋白质的高级结构不稳定

蛋白质的二级结构是什么?肽键是氢键吗?

蛋白质的二级结构是指多肽链骨架盘绕折叠所形成的有规律性的结构。最基本的二级结构类型有α-螺旋结构和β-折叠结构,此外还有β-转角和自由回转。右手α-螺旋结构是在纤维蛋白和球蛋白中发现的最常见的二级结构,每圈螺旋含有3.6个氨基酸残基,螺距为0.54nm,螺旋中的每个肽键均参与氢键的形成以维持螺旋的稳定。β-折叠结构也是一种常见的二级结构,在此结构中,多肽链以较伸展的曲折形式存在,肽链(或肽段)的排列可以有平行和反平行两种方式。氨基酸之间的轴心距为0.35nm,相邻肽链之间借助氢键彼此连成片层结构。 蛋白质的二级结构的维持稳定确实是氢键在作用的,这是因为在无论如何的情况下,蛋白质内的氢原子都是在电子云极其稀薄的情况下的,所以其他电负性强的原子就会结合他,这就和水里面的氢键一样,水的氢键是一个水分子的氧原子和两个其他水分子的氢原子产生氢键,而自身的氢原子又参与了其他水分子的结合产生氢键一样。而考虑到分子的立体结构,氢原子只有在其结合其它原子的另一个方向上才可以和其他原子产生氢键的,而这个方向可以有广泛的结合范围,并且氢键并不是让氢原子的电子云得到充实得很多,所以一个氢原子完全可以产生这样的结构。这是第一个原因。
第二个原因是:并不是所有的氢原子在一级结构中就产生了氢键,还有好多的氢原子(当然也有氧原子和其他电负性很强的原子)没有产生氢键,最明显的就是赖氨酸和酪氨酸的结构了,因为他们结构的特殊性,所以造成了他们附近的相连氨基酸的结构不能和其他的相关原子产生氢键,所以这样很容易有其他“遗漏”的潜在氢键产生。